Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(10)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894230

RESUMO

We aim to analyze Neisseria gonorrhoeae isolates in central Panama, characterize the associated gonococcal antimicrobial resistance (AMR) and conduct molecular epidemiology and genetic typing. We conducted a retrospective study based on N. gonorrhoeae hospital isolates collected between 2013 and 2018. AMR was determined using dilution agar and Etest®. Molecular typing was conducted using the Multilocus Sequence Typing (ST) scheme. The isolates analyzed (n = 30) showed resistance to penicillin (38%), tetracycline (40%), and ciprofloxacin (30%), and sensitivity to extended-spectrum cephalosporins and azithromycin. We identified 11 STs, the most frequent of which was ST1901 among the strains with decreased sensitivity and resistance to three types of antibiotics. We identified eight variations for the penA gene, all non-mosaic, with type II LVG as the most frequent (50%). To the best of our knowledge, we conducted the first Central American genomic study that analyzes a collection of gonococcal isolates, which represents a benchmark for future epidemiological and molecular genetic studies. The high prevalence of ciprofloxacin, tetracycline, and penicillin resistance, in addition to the identification of the worldwide spread of multidrug-resistant clone ST1901, should prompt the continuous and reinforced surveillance of AMR, including the molecular epidemiology of N. gonorrhoeae in Panama.

2.
Antibiotics (Basel) ; 11(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36551474

RESUMO

Klebsiella pneumoniae has been among the main pathogens contributing to the burden of antimicrobial resistance (AMR) in the last decade, and K. pneumoniae AMR strains predominantly cluster in the ST258 clonal complex. However, ST307 is emerging as an important high-risk clone. In Central America, there have been few studies on the molecular epidemiology of the K. pneumoniae strains involved in infections. MATERIALS AND METHODS: We conducted an epidemiological study in three reference hospitals in the central region of Panama, using isolates of K. pneumoniae involved in infections, and identifying their AMR profile, associated clinical risk factors, and molecular typing using a multilocus sequence typing (ST) scheme. RESULTS: Six STs were detected: 307 (55%), 152, 18, 29, 405, and 207. CTX-M-15- and TEM-type beta-lactamases were identified in 100% of ESBL-producing strains; substitutions in gyrA Ser83Ile and parC Ser80Ile were identified in all ST307s; and in ST152 gyrA Ser83Phe, Asp87Ala, and parC Ser80Ile, the qnrB gene was detected in all strains resistant to ciprofloxacin. CONCLUSIONS: We present the first report on ST307 in three reference hospitals in the central region of Panama, which is a high-risk emerging clone and represents a public health alert for potential difficulties in managing K. pneumoniae infections in Panama, and which may extend to other Central American countries.

3.
Genes (Basel) ; 14(1)2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36672813

RESUMO

Background: ß-lactamase-producing Escherichia coli are a widely distributed source of antimicrobial resistance for animals and humans. Little is known about the susceptibility profile and genetic characteristics of E. coli strains isolated from domestic dogs in Latin America. Methods: We report on a cross-sectional study that evaluated E. coli strains isolated from fecal samples of domestic dogs in central Panama. The extended-spectrum ß-lactamase (ESBL), AmpC genes, and plasmid-mediated quinolone resistance were investigated. Molecular typing using Pasteur's multilocus sequence typing (MLST) was conducted. Results: A total of 40 E. coli isolates were obtained, of which 80% (32/40) were resistant to at least one of the antibiotics tested, while 20% (8/40) were sensitive to all antibiotics analyzed in this study (p < 0.001). Forty percent of the strains were resistant to three or more antibiotics. The most common resistance was to tetracycline (45%) and ampicillin (30%) while 2.5% showed an ESBL phenotype. Antibiotic resistance genes were detected for one ß-lactamase (blaTEM-1) and two plasmid-mediated quinolone resistance (PMQR) enzymes (qnrS and qnrB). In addition, mutations in the chromosomal AmpC gene were observed at positions −35, −28, −18, −1, and +58. Fourteen different sequence types (STs) were identified; the most frequent were ST399 and ST425 (12% each). ST3 and ST88, which have been previously identified in human clinical isolates, were also evidenced. Three new STs were found for the first time: ST1015, ST1016 (carrier of the blaTEM-1 gene), and ST1017 (carrier of the blaTEM-1, qnrS, and qnrB genes). Conclusions: In the intestinal strains of E. coli isolated from domestic dogs, there was a high frequency of resistance to antibiotics. The presence of genes from plasmids and chromosomal mutations that conferred antibiotic resistance, the identification of isolates previously reported in humans, and the genetic diversity of STs (including three that were newly identified) confirmed the determinants of resistance to antibiotics in the domestic dogs from central Panama.


Assuntos
Escherichia coli , Quinolonas , Humanos , Cães , Animais , beta-Lactamases/genética , Quinolonas/farmacologia , Tipagem de Sequências Multilocus , Estudos Transversais , Antibacterianos/farmacologia , Plasmídeos/genética , Variação Genética/genética
4.
Ther Adv Infect Dis ; 8: 20499361211054918, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733509

RESUMO

Klebsiella pneumoniae spp ozaenae is a versatile bacterial species able to acquire antimicrobial resistance; the species presents a higher antimicrobial resistance profile compared to Klebsiella pneumoniae spp pneumoniae. Carbapenemase and extended spectrum ß-lactamase (ESBL)-producing bacteria commonly arise in clinical settings where antimicrobial stewardship is limited. Our study aims to report the phenotypical and genetic characteristics of nosocomial Klebsiella pneumoniae spp ozaenae isolates associated with mortality collected from a tertiary-level hospital in Panama City. In October 2020, 11 consecutive multidrug-resistant Gram-negative isolates were recovered from secretions and blood cultures from hospitalized patients. Nearly 90% (10/11) of these patients died, and bacteria was obtained from six patients for investigation. Biochemical evaluation of the six isolates revealed the presence of multidrug-resistant Klebsiella pneumoniae spp ozaenae. Phenotypic evaluation indicated resistance to carbapenemase and EBSL. In contrast, genetic evaluation by PCR showed that only 30% (2/6) were resistant to CTX-M-1 (CTX-M group 1), whereas 60.7% (4/6) presented carbapenemase resistance genes, and 33.3% (2/6) presented New Delhi metallo-ß-lactamase (NDM) resistance genes. Klebsiella pneumoniae ST258 was identified in 83.3% (5/6) of the isolates. Phylogenetic analysis using 16S revealed low homology among the six isolates. These results suggest that antibiotic resistance genes may have been incorporated into these Klebsiella pneumoniae spp ozaenae isolates within the hospital environment. We recommend strengthening the antimicrobial stewardship program and antibiotic control policy, as well as heightened infection control and prevention measures, such as ward sanitation and increased hand washing frequency.

5.
Antibiotics (Basel) ; 10(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34438949

RESUMO

Escherichia coli represents one of the most common causes of community-onset and nosocomial infections. Strains carrying extended spectrum ß-lactamases (ESBL) are a serious public health problem. In Central America we have not found studies reporting the molecular epidemiology of E. coli strains implicated in local infections, so we conducted this study to fill that gap. Materials and Methods: We report on an epidemiological study in two reference hospitals from central Panama, identifying the susceptibility profile, associated risk factors, and molecular typing of E. coli strains isolated between November 2018 and November 2019 using Pasteur's Multilocus Sequence Typing (MLST) scheme. Results: A total of 30 E. coli isolates with antimicrobial resistance were analyzed, 70% of which came from inpatients and 30% from outpatients (p < 0.001). Two-thirds of the samples came from urine cultures. Forty-three percent of the strains were ESBL producers and 77% were resistant to ciprofloxacin. We identified 10 different sequence types (STs) with 30% of the ESBL strains identified as ST43, which corresponds to ST131 of the Achtman MLST scheme-the E. coli pandemic clone. Thirty-eight percent of the E. coli strains with the ESBL phenotype carried CTX-M-15. Conclusions: To the best of our knowledge, this is the first report confirming the presence of the pandemic E. coli clone ST43/ST131 harboring CTX-M-15 in Central American inpatients and outpatients. This E. coli strain is an important antimicrobial-resistant organism of public health concern, with potential challenges to treat infections in Panama and, perhaps, the rest of Central America.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...